## Ring overview

The `Ring` class is for types that support addition, multiplication, and subtraction operations.

Instances must satisfy the following law in addition to the `Semiring` laws:

• Additive inverse: `a - a <-> (zero - a) + a <-> zero`

# instances

## getFunctionRing

Signature

``````export declare function getFunctionRing<A, B>(ring: Ring<B>): Ring<(a: A) => B>
``````

## getTupleRing

Given a tuple of `Ring`s returns a `Ring` for the tuple

Signature

``````export declare function getTupleRing<T extends ReadonlyArray<Ring<any>>>(
...rings: T
): Ring<{ [K in keyof T]: T[K] extends Ring<infer A> ? A : never }>
``````

Example

``````import { getTupleRing } from 'fp-ts/lib/Ring'
import { fieldNumber } from 'fp-ts/lib/Field'

const R = getTupleRing(fieldNumber, fieldNumber, fieldNumber)
assert.deepStrictEqual(R.add([1, 2, 3], [4, 5, 6]), [5, 7, 9])
assert.deepStrictEqual(R.mul([1, 2, 3], [4, 5, 6]), [4, 10, 18])
assert.deepStrictEqual(R.one, [1, 1, 1])
assert.deepStrictEqual(R.sub([1, 2, 3], [4, 5, 6]), [-3, -3, -3])
assert.deepStrictEqual(R.zero, [0, 0, 0])
``````

# type classes

## Ring (interface)

Signature

``````export interface Ring<A> extends Semiring<A> {
readonly sub: (x: A, y: A) => A
}
``````

`negate x` can be used as a shorthand for `zero - x`
``````export declare function negate<A>(ring: Ring<A>): (a: A) => A